8 research outputs found

    Computer-Aided Assessment of Tuberculosis with Radiological Imaging: From rule-based methods to Deep Learning

    Get PDF
    Mención Internacional en el título de doctorTuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb.) that produces pulmonary damage due to its airborne nature. This fact facilitates the disease fast-spreading, which, according to the World Health Organization (WHO), in 2021 caused 1.2 million deaths and 9.9 million new cases. Traditionally, TB has been considered a binary disease (latent/active) due to the limited specificity of the traditional diagnostic tests. Such a simple model causes difficulties in the longitudinal assessment of pulmonary affectation needed for the development of novel drugs and to control the spread of the disease. Fortunately, X-Ray Computed Tomography (CT) images enable capturing specific manifestations of TB that are undetectable using regular diagnostic tests, which suffer from limited specificity. In conventional workflows, expert radiologists inspect the CT images. However, this procedure is unfeasible to process the thousands of volume images belonging to the different TB animal models and humans required for a suitable (pre-)clinical trial. To achieve suitable results, automatization of different image analysis processes is a must to quantify TB. It is also advisable to measure the uncertainty associated with this process and model causal relationships between the specific mechanisms that characterize each animal model and its level of damage. Thus, in this thesis, we introduce a set of novel methods based on the state of the art Artificial Intelligence (AI) and Computer Vision (CV). Initially, we present an algorithm to assess Pathological Lung Segmentation (PLS) employing an unsupervised rule-based model which was traditionally considered a needed step before biomarker extraction. This procedure allows robust segmentation in a Mtb. infection model (Dice Similarity Coefficient, DSC, 94%±4%, Hausdorff Distance, HD, 8.64mm±7.36mm) of damaged lungs with lesions attached to the parenchyma and affected by respiratory movement artefacts. Next, a Gaussian Mixture Model ruled by an Expectation-Maximization (EM) algorithm is employed to automatically quantify the burden of Mtb.using biomarkers extracted from the segmented CT images. This approach achieves a strong correlation (R2 ≈ 0.8) between our automatic method and manual extraction. Consequently, Chapter 3 introduces a model to automate the identification of TB lesions and the characterization of disease progression. To this aim, the method employs the Statistical Region Merging algorithm to detect lesions subsequently characterized by texture features that feed a Random Forest (RF) estimator. The proposed procedure enables a selection of a simple but powerful model able to classify abnormal tissue. The latest works base their methodology on Deep Learning (DL). Chapter 4 extends the classification of TB lesions. Namely, we introduce a computational model to infer TB manifestations present in each lung lobe of CT scans by employing the associated radiologist reports as ground truth. We do so instead of using the classical manually delimited segmentation masks. The model adjusts the three-dimensional architecture, V-Net, to a multitask classification context in which loss function is weighted by homoscedastic uncertainty. Besides, the method employs Self-Normalizing Neural Networks (SNNs) for regularization. Our results are promising with a Root Mean Square Error of 1.14 in the number of nodules and F1-scores above 0.85 for the most prevalent TB lesions (i.e., conglomerations, cavitations, consolidations, trees in bud) when considering the whole lung. In Chapter 5, we present a DL model capable of extracting disentangled information from images of different animal models, as well as information of the mechanisms that generate the CT volumes. The method provides the segmentation mask of axial slices from three animal models of different species employing a single trained architecture. It also infers the level of TB damage and generates counterfactual images. So, with this methodology, we offer an alternative to promote generalization and explainable AI models. To sum up, the thesis presents a collection of valuable tools to automate the quantification of pathological lungs and moreover extend the methodology to provide more explainable results which are vital for drug development purposes. Chapter 6 elaborates on these conclusions.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidenta: María Jesús Ledesma Carbayo.- Secretario: David Expósito Singh.- Vocal: Clarisa Sánchez Gutiérre

    Implementación de una herramienta para medidas de perfusión cerebral en imagen de resonancia magnética bajo ImageJ

    Get PDF
    La finalidad de este proyecto es el desarrollo de una herramienta abierta como plugin del software de procesamiento de imagen ImageJ, capaz de cuantificar estudios de perfusión por resonancia magnética obteniendo parámetros significativos en el estudio del flujo sanguíneo cerebral que aportan información sobre la agresividad de los tumores así como la visualización de éstos en lo que se denominan mapas paramétricos. Dichos mapas paramétricos serán: El Volumen Sanguíneo Cerebral (CBV), el Tiempo Medio de Transito (MTT) y el Flujo Sanguíneo Cerebral (CBF). La obtención de los parámetros se realiza estudiando la evolución temporal de la concentración del medio de contraste perfundido que es trasportado por el torrente sanguíneo a los diferentes tejidos. La concentración de contraste se puede ajustar según modelos matemáticos conocidos publicados en la literatura significativa.Project purpose is to develop a new OSS (Open Source Software) tool as a plugin for the image processing software ImageJ. It allows the quantification of MRI perfusion studies by obtaining meaningful parameters for the cerebral bloodstream. With the retrieved information, the tumor aggressiveness is measured and results are display in what is called the parametric maps: Cerebral Blood Volume (CBV), Mean Transit Time (MTT) and Cerebral Blood Flow (CBF). The estimation of the parameters depends on the temporal evolution of the concentration contrast perfused inside the tissues. Having this in mind, the user can select whether to fit the contrast concentration to a well-known mathematical model.Ingeniería Técnica en Sistemas de Comunicació

    Unsupervised CT lung image segmentation of a mycobacterium tuberculosis infection model

    Get PDF
    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that produces pulmonary damage. Radiological imaging is the preferred technique for the assessment of TB longitudinal course. Computer-assisted identification of biomarkers eases the work of the radiologist by providing a quantitative assessment of disease. Lung segmentation is the step before biomarker extraction. In this study, we present an automatic procedure that enables robust segmentation of damaged lungs that have lesions attached to the parenchyma and are affected by respiratory movement artifacts in a Mycobacterium Tuberculosis infection model. Its main steps are the extraction of the healthy lung tissue and the airway tree followed by elimination of the fuzzy boundaries. Its performance was compared with respect to a segmentation obtained using: (1) a semi-automatic tool and (2) an approach based on fuzzy connectedness. A consensus segmentation resulting from the majority voting of three experts' annotations was considered our ground truth. The proposed approach improves the overlap indicators (Dice similarity coefficient, 94% ± 4%) and the surface similarity coefficients (Hausdorff distance, 8.64 mm ± 7.36 mm) in the majority of the most difficult-to-segment slices. Results indicate that the refined lung segmentations generated could facilitate the extraction of meaningful quantitative data on disease burden.The research leading to these results received funding from the Innovative Medicines Initiative (www.imi.europa.eu) Joint Undertaking under grant agreement no. 115337, whose resources comprise funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in kind contribution. This work was partially funded by projects TEC2013-48552-C2-1-R, RTC-2015-3772-1, TEC2015-73064-EXP and TEC2016-78052-R from the Spanish Ministerio de Economía, Industria y Competitividad, TOPUS S2013/MIT-3024 project from the regional government of Madrid and by the Department of Health, UK

    Development and validation of an open source quantification tool for DSC-MRI studies

    Get PDF
    Motivation. This work presents the development of an open source tool for the quantification of dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion studies. The development of this tool is motivated by the lack of open source tools implemented on open platforms to allow external developers to implement their own quantification methods easily and without the need of paying for a development license.Materials and methods. This quantification tool was developed as a plugin for the ImageJ image analysis platform using the Java programming language. A modular approach was used in the implementation of the components, in such a way that the addition of new methods can be done without breaking any of the existing functionalities. For the validation process, images from seven patients with brain tumors were acquired and quantified with the presented tool and with a widely used clinical software package. The resulting perfusion parameters were then compared.Results. Perfusion parameters and the corresponding parametric images were obtained. When no gamma-fitting is used, an excellent agreement with the tool used as a gold-standard was obtained (R²>0.8 and values are within 95% CI limits in Bland–Altman plots).Conclusion. An open source tool that performs quantification of perfusion studies using magnetic resonance imaging has been developed and validated using a clinical software package. It works as an ImageJ plugin and the source code has been published with an open source license.This work was partially supported by the Human Frontier Science Program (Research Grant 2013).Publicad

    Computed tomography-based biomarker for longitudinal assessment of disease Burden in pulmonary tuberculosis

    Get PDF
    Purpose: Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images. Procedures: Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm. Results: The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R2 ≈ 0.8).The research leading to these results received funding from the Innovative Medicines Initiative (www.imi.europa.eu) Joint Undertaking under grant agreement no. 115337, whose resources comprise funding from EU FP7/2007-2013 and EFPIA companies in-kind contribution. This study was partially funded by projects TEC2013-48552-C2-1-R, RTC-2015-3772-1, TEC2015-73064-EXP and TEC2016-78052-R from the Spanish Ministry of Economy, Industry and Competitiveness (MEIC), TOPUS S2013/MIT-3024 project from the regional government of Madrid and by the Department of Health, UK. LEV is funded by the Intramural Research Program of NIAID, NIH. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505

    Performance of ultra-high-frequency ultrasound in the evaluation of skin involvement in systemic sclerosis: a preliminary report

    Get PDF
    High frequency ultrasound allows visualization of epidermis, dermis and hypodermis, precise measurement of skin thickness, as well as assessment of skin oedema, fibrosis and atrophy. The aim of this pilot cross-sectional observational study was to assess the performance and multiobserver variability of ultra-high-frequency (UHF) (50 MHz) ultrasound (US) in measuring skin thickness as well as the capacity of UHF-derived skin features to differentiate SSc patients from healthy controls

    Reduction of motion effects in myocardial arterial spin labeling

    Get PDF
    Purpose: To evaluate the accuracy and reproducibility of myocardial blood flow measurements obtained under different breathing strategies and motion correction techniques with arterial spin labeling. Methods: A prospective cardiac arterial spin labeling study was performed in 12 volunteers at 3 Tesla. Perfusion images were acquired twice under breath-hold, synchronized-breathing, and free-breathing. Motion detection based on the temporal intensity variation of a myocardial voxel, as well as image registration based on pairwise and groupwise approaches, were applied and evaluated in synthetic and in vivo data. A region of interest was drawn over the mean perfusion-weighted image for quantification. Original breath-hold datasets, analyzed with individual regions of interest for each perfusion-weighted image, were considered as reference values. Results: Perfusion measurements in the reference breath-hold datasets were in line with those reported in literature. In original datasets, prior to motion correction, myocardial blood flow quantification was significantly overestimated due to contamination of the myocardial perfusion with the high intensity signal of blood pool. These effects were minimized with motion detection or registration. Synthetic data showed that accuracy of the perfusion measurements was higher with the use of registration, in particular after the pairwise approach, which probed to be more robust to motion. Conclusion: Satisfactory results were obtained for the free-breathing strategy after pairwise registration, with higher accuracy and robustness (in synthetic datasets) and higher intrasession reproducibility together with lower myocardial blood flow variability across subjects (in in vivo datasets). Breath-hold and synchronized-breathing after motion correction provided similar results, but these breathing strategies can be difficult to perform by patients.Verónica Aramendía-Vidaurreta received PhD grant support from Asociación de Amigos de la Universidad de Navarra and Banco Santande

    Association of visual and quantitative heterogeneity of 18F-FDG PET images with treatment response in locally advanced rectal cancer: A feasibility study.

    Get PDF
    Background and purposeFew tools are available to predict tumor response to treatment. This retrospective study assesses visual and automatic heterogeneity from 18F-FDG PET images as predictors of response in locally advanced rectal cancer.MethodsThis study included 37 LARC patients who underwent an 18F-FDG PET before their neoadjuvant therapy. One expert segmented the tumor from the PET images. Blinded to the patient¿s outcome, two experts established by consensus a visual score for tumor heterogeneity. Metabolic and texture parameters were extracted from the tumor area. Multivariate binary logistic regression with cross-validation was used to estimate the clinical relevance of these features. Area under the ROC Curve (AUC) of each model was evaluated. Histopathological tumor regression grade was the ground-truth.ResultsStandard metabolic parameters could discriminate 50.1% of responders (AUC = 0.685). Visual heterogeneity classification showed correct assessment of the response in 75.4% of the sample (AUC = 0.759). Automatic quantitative evaluation of heterogeneity achieved a similar predictive capacity (73.1%, AUC = 0.815).ConclusionA response prediction model in LARC based on tumor heterogeneity (assessed either visually or with automatic texture measurement) shows that texture features may complement the information provided by the metabolic parameters and increase prediction accuracy.This work was partially supported by the Spanish Ministry of Economy and Competitiveness (TEC2016–78052-R, PID2019-109820RB-I00) (to AMB) and TEC2013-48251-C2 (to JP), Instituto de Salud Carlos III and European Regional Development Fund (FEDER) Funds from the European Commission, “A way of making Europe” (PI15/02121) and a Leonardo grant to Researchers and Cultural Creators 2017, BBVA Foundation (to AMB). PMG is supported by ‘Beca de Colaboración’ of the Spanish Ministry of Education, Culture and Sports. The CNIC is supported by the Ministry of Economy, Industry and Competitiveness (MEIC) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505)
    corecore